Skip to main content

Harvest-Funded and Recent Partner Research

(*Denotes Harvest-Funded)

(Chronologically Ordered)

  • *Britos, Braulio; Hernandez, Manuel A.; Puricelli, Estefania; and Sahajpal, Ritvik. 2023. Climatic stresses and rural emigration in Guatemala. Project Note. Washington, DC; College Park MD: International Food Policy Research Institute (IFPRI); NASA Harvest. https://doi.org/10.2499/p15738coll2.136920
  • *Tanaka, T.; et al. Satellite forecasting of crop harvest can trigger a cross-hemispheric production response and improve global food security. Communications: Earth and Environment. 2023. https://doi.org/10.1038/s43247-023-00992-2
  • Li, H.; et al. Development of a 10-m resolution maize and soybean map over China: Matching satellite-based crop classification with sample-based area estimation. Remote Sensing of Environment. 2023. https://doi.org/10.1016/j.rse.2023.113623
  • Borges, D.E.; et al. Earth observations into action: the systemic integration of earth observation applications into national risk reduction decision structures. Disaster Prevention and Management. 2023.
  • Touzi, R.; Pawley, S.M.; Wilson, P.; Jiao, X.; Hosseini, M.; Shimada, M. Polarimetric L-Band ALOS2-PALSAR2 for Discontinuous Permafrost Mapping in Peatland Regions. Remote Sensing. 2023; 15(9):2312. https://doi.org/10.3390/rs15092312
  • *Deines, J., Swatantran, A., Ye, D., Myers, B., Archontoulis, S., Lobell, D. (2023). Field-scale dynamics of planting dates in the US Corn Belt from 2000 to 2020. Remote Sensing of Environment. https://doi.org/10.1016/j.rse.2023.113551
  • *Becker-Reshef, I., Barker, B., Whitcraft, A. et al. Crop Type Maps for Operational Global Agricultural Monitoring. Scientific Data. 10 (172). https://doi.org/10.1038/s41597-023-02047-9
  • *Catherine Nakalembe and Hannah Kerner. (2023). Considerations for AI-EO for agriculture in Sub-Saharan Africa. Environmental Research Letters. 18 (4). https://doi.org/10.1088/1748-9326/acc476
  • *Christian A., Skakun, S., Becker-Reshef, I. (2022). The Rise and Volatility of Russian Winter Wheat Production. Environ. Research Communications. 4 (10). https://doi.org/10.1088/2515-7620/ac97d2
  • *Deines, J., Guan, K., Lopez, B., Zhou, Q., White, C., Wang, S., Lobell, D. (2023). Recent cover crop adoption is associated with small maize and soybean yield losses in the United States. Global Change Biology, 29 (3). https://doi.org/10.1111/gcb.16489
  • Bentley, A.R., Donovan, J., Sonder, K. et al. Near- to long-term measures to stabilize global wheat supplies and food security. Nat Food 3, 483–486 (2022). https://doi.org/10.1038/s43016-022-00559-y
  • *Vadrevu, K. P., Toan, T.L., Ray, S. S., & Justice, C. (Eds.). (2022). Remote Sensing of Agriculture and Land Cover/Land Use Changes in South and Southeast Asian Countries. Springer. https://doi.org/10.1007/978-3-030-92365-5
  • Wang, S., Guan, K., Zhang, C., Lee, D., Margenot, A. J., Ge, Y., Peng, J., Zhou, W., Zhou, Q., Huang, Y. (2022). Using soil library hyperspectral reflectance and machine learning to predict soil organic carbon: Assessing potential of airborne and spaceborne optical soil sensing. Remote Sensing of the Environment. https://doi.org/10.1016/j.rse.2022.112914
  • *Wang, S., Waldner, F., & Lobell, D. B. Unlocking large-scale crop field delineation in smallholder farming systems with transfer learning and weak supervision. (2022). arXiv preprint arXiv:2201.04771https://arxiv.org/abs/2201.04771v1
  • *Campolo, J., Ortiz-Monasterio, I., Guerena, D., Lobell, D. Evaluating maize yield response to fertilizer and soil in Mexico using ground and satellite approaches. (2022). Field Crops Research. 276. https://doi.org/10.1016/j.fcr.2021.108393
  • *Bandaru, V., Yaramasu, R., Jones, C., Izaurralde, R., Reddy, A., Sedano, F., Daughtry, C., Becker-Reshef, I., Justice, C. Geo-CropSim: A Geo-spatial crop simulation modeling framework for regional scale crop yield and water use assessment. (2021). ISPRS Journal of Photogrammetry and Remote Sensing. 183 (34-53). https://doi.org/10.1016/j.isprsjprs.2021.10.024
  • *Glauber, J., Miranda, M. A model of asynchronous bi-hemispheric production in global agricultural commodity markets. (2021). American Journal of Agricultural Economics. https://doi.org/10.1111/ajae.12241
  • Franch, B., Bautista, A.S., Fita, D., Rubio, C., Tarrazó-Serrano, D., Sánchez, A., Skakun, S., Vermote, E., Becker-Reshef, I., Uris, A. Within-Field Rice Yield Estimation Based on Sentinel-2 Satellite Data. (2021). Remote Sens. 13, 4095. https://doi.org/10.3390/rs13204095
  • *Franch, B., Vermote, E., Skakun, S., Santamaria-Artigas, A., Kalecinski, N., Roger, J.C., Becker-Reshef, I., Barker, B., Justice, C., Sobrino, The ARYA crop yield forecasting algorithm: Application to the main wheat exporting countries. (2021). International Journal of Applied Earth Observation and Geoinformation. 104. https://doi.org/10.1016/j.jag.2021.102552.
  • *Akhavan, Z., Hasanlou, M., Hosseini, M., Becker-Reshef, I. (2021). Soil moisture retrieval improvement over agricultural fields by adding entropyalpha dual-polarimetric decomposition features. J. Appl. Remote Sens. 15(3), 034516. 10.1117/1.JRS.15.034516.
  • *Sarmiento, D., et al. Daily Precipitation Frequency Distributions Impacts on Land-Surface Simulations of CONUS. (2021) Frontiers in Water. 3. 10.3389/frwa.2021.640736
  • *Aoki, A., Robledo, J., Izaurralde, C., Balzarini, M. (2021). Temporal integration of remote-sensing land cover maps to identify crop rotation patterns in a semiarid region of Argentina. Agronomy Journal. DOI: 10.1002/agj2.20758
  • *Ranjbar, S., Akhoondzadeh, M., Brisco, B., Amani, M., Hosseini, M. (2021). Soil Moisture Change Monitoring from C and L-band SAR Interferometric Phase Observations. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. DOI 10.1109/JSTARS.2021.3096063
  • *Nakalembe, C., Becker-Reshef, I., Bonifacio, R., Hua, G., Humber, M., Justice, C. Keniston, J., Mwangi, K., Rembold, F., Shukla, S., Urbano, F., Whitcraft, A., Li, F., Zappacosta, M., Jarvis, I., Sanchez, A. (2021). A review of satellite-based global agricultural monitoring systems available for Africa. Science Direct. 29. https://doi.org/10.1016/j.gfs.2021.100543
  • *Castaño-Sánchez, J., Izaurralde, R., Prince, S. (2021). Land-use conversions from managed grasslands to croplands in Uruguay increase medium-term net carbon emissions to the atmosphere. Journal of Land Use Science. 16(3), 240-259. 10.1080/1747423X.2021.1933227
  • *Song, XP., Hansen, M.C., Potapov, P. et al. Massive soybean expansion in South America since 2000 and implications for conservation. Nat Sustain (2021). https://doi.org/10.1038/s41893-021-00729-z
  • Kluger, D., Wang, S., Lobell, D. (2021). Two shifts for crop mapping: Leveraging aggregate crop statistics to improve satellite-based maps in new regions. Remote Sensing of Environment. 262. https://doi.org/10.1016/j.rse.2021.112488

  • Hall, J., Zibstev, S., Giglio, L., Skakun, S., Myroniuk, V., Zhuravel, O., Goldammer, J., Kussul, N.. (2021). Environmental and political implications of underestimated cropland burning in Ukraine. Environmental Research Letters. https://doi.org/10.1088/1748-9326/abfc04

  • *Hosseini, M., McNairn, H., Mitchell, S., Robertson, L. D., Davidson, A., Ahmadian, N., Bhattacharya, A., et al. (2021). A Comparison between Support Vector Machine and Water Cloud Model for Estimating Crop Leaf Area Index. Remote Sensing, 13(7), 1348. MDPI AG. Retrieved from http://dx.doi.org/10.3390/rs13071348

  • Khan, A., Hansen, M., Potapov, P., Adusei, B., Stehman, S., Steininger, M. (2021) An operational automated mapping algorithm for in-season estimation of wheat area for Punjab, Pakistan. International Journal of Remote Sensing. 42(10), 3833-3849. 10.1080/01431161.2021.1883200

  • *Pervez, S., McNally, A., Arsenault, K., Budde, M., Rowland, J. (2020). Vegetation Monitoring Optimization With Normalized Difference Vegetation Index and Evapotranspiration Using Remote Sensing Measurements and Land Surface Models Over East Africa. https://doi.org/10.3389/fclim.2021.589981
  • *Song, X., Huang, W., Hansen, M., Potapov, P. (2020). An evaluation of Landsat, Sentinel-2, Sentinel-1 and MODIS data for crop type mapping. Science of Remote Sensing. 3. https://doi.org/10.1016/j.srs.2021.100018
  • *Shukla, S., Husak, G., Turner, W., Davenport, F., Funk, C., Harrison, L., Krell, N. (2020). A slow rainy season onset is a reliable harbinger of drought in most food insecure regions in Sub-Saharan Africa. PLOS ONE. https://doi.org/10.1371/journal.pone.0242883
  • Akhavan, Z., Hasanlou, M., Hosseini, M., McNairn, H. (2021). Decomposition-Based Soil Moisture Estimation Using UAVSAR Fully Polarimetric Images. Agronomy. 11(1), 145. https://doi.org/10.3390/agronomy11010145
  • *Hosseini, M., Kerner, H., Sahajpal, R., Puricelli, E., Lu, Y., Lawal, A., Humber, M., Mitkish, M., Meyer, S., Becker-Reshef, I. (2020). Evaluating the Impact of the 2020 Iowa Derecho on Corn and Soybean Fields Using Synthetic Aperture Radar. Remote Sensing. 12(23), 3878. https://doi.org/10.3390/rs12233878
  • Dingle Robertson, L., Davidson, A., McNairn, H., Hosseini, M., Mitchell, S., Abelleyra, D., Verón, S., et al. (2020). C-band synthetic aperture radar (SAR) imagery for the classification of diverse cropping systems. International Journal of Remote Sensing. https://doi.org/10.1080/01431161.2020.1805136
  • *Lobell, D., Deines, J.,Tommaso, S. (2020). Changes in the drought sensitivity of US maize yields. Nature Food. https://doi.org/10.1038/s43016-020-00165-w
  • *Dado, W., Deines, J., Patel, R., Liang, S., Lobell, D. (2020). High-Resolution Soybean Yield Mapping Across the US Midwest Using Subfield Harvester Data. Journal of Remote Sensing. 12(21), 3471. https://doi.org/10.3390/rs12213471
  • *Nakalembe, C. (2020). Urgent and critical need for Sub-Saharan African countries to invest in Earth observation-based agricultural early warning and monitoring systems. Environmental Research Letters. https://doi.org/10.1088/1748-9326/abc0bb
  • Sazib, N., Mladenova, I., Bolton, J. (2020). Assessing the Impact of ENSO on Agriculture Over Africa Using Earth Observation Data. Frontiers in Sustainable Food Systems. https://doi.org/10.3389/fsufs.2020.509914
  • Hagen, S., et al. (2020). Mapping Conservation Management Practices and Outcomes in the Corn Belt Using the Operational Tillage Information System (OpTIS) and the Denitrification–Decomposition (DNDC) Model. MDPI, Multidisciplinary Digital Publishing Institute Land Special Issue on Cropland Carbon. 9(11), 408. https://doi.org/10.3390/land9110408
  • Vermote, E.F., Skakun, S., Becker-Reshef, I., Saito, K. (2020). Remote Sensing of Coconut Trees in Tonga Using Very High Spatial Resolution WorldView-3 Data. Remote Sensing Journal. 12 (19), 3113. https://doi.org/10.3390/rs12193113

  • *Wang, S., Tommaso, S., Deines, J., Lobell, D. (2020). Mapping twenty years of corn and soybean across the US Midwest using the Landsat archive. (307). https://doi.org/10.1038/s41597-020-00646-4
  • *Bandaru, V., Yaramasua, R., PNVR, K. (2020). Pre-season crop type mapping using deep neural networks. Computers and Electronics in Agriculture. (176). https://doi.org/10.1016/j.compag.2020.105664
  • *Bandaru, V., Yaramasua, R., PNVR, K., He, J., Sedano, F., Sahajpal, R., Wardlow, B.D., Suyker, A., Justice, C. (2020). PhenoCrop: An integrated satellite-based framework to estimate physiological growth stages of corn and soybeans. International Journal of Applied Earth Observation and Geoinformation. (92). https://doi.org/10.1016/j.jag.2020.102188
  • Hosseini, M., McNairn, H., Mitchell, S., Dingle Robertson, L., Davidson, A., Homayouni, S. (2020). Integration of synthetic aperture radar and optical satellite data for corn biomass estimation. 7 (100857). https://doi.org/10.1016/j.mex.2020.100857
  • *Funk, C., Peterson, P., Landsfeld, M., Davenport, F., Becker, A., Schneider U., Pedreros, D., McNally, A., Arsenault, K., Harrison, L., Shraddhanand, S. (2020). Algorithm and Data Improvements for Version 2.1 of the Climate Hazards Center’s InfraRed Precipitation with Stations Data Set. 67 (409-427). https://doi.org/10.1007/978-3-030-24568-9_23
  • *Peng, J., Dadson, S., Hirpa, F., Dyer, E., Lees, T., Miralles, D., Vicente-Serrano, S., Funk, C. (2020). A pan-African high-resolution drought index dataset. Earth System Science Data. 12 (753–769). https://doi.org/10.5194/essd-12-753-202
  • Wolanin, A., Mateo-García, G., Camps-Valls, G., Gómez-Chova, L., Meroni, M., Duveiller, G., Liangzhi, Y., Guanter, L. (2020). Estimating and understanding crop yields with explainable deep learning in the Indian Wheat Belt. Environmental Research Letters 15 (2). https://doi.org/10.1088/1748-9326/ab68ac
  • *Kimm, H., Guan, K., Jiang, C., Peng, B., Gentry, L., Wilkin, S., Wang, S., Cai, Y., Bernacchi, C., Peng, J., Luo, Y. (2020). Deriving high-spatiotemporal-resolution leaf area index for agroecosystems in the U.S. Corn Belt using Planet Labs CubeSat and STAIR fusion data. Remote Sensing of Environment. 239. https://doi.org/10.1016/j.rse.2019.111615
  • *Cai, Y., Guan, K., Nafziger, E., Chowdhary, G., Peng, B., Jin, Z., Wang, S., Wang, S. (2020). Detecting In-Season Crop Nitrogen Stress of Corn for Field Trials Using UAV- and CubeSat-Based Multispectral Sensing. IEEE Xplore Digital Library. 12 (12). https://ieeexplore.ieee.org/document/8950295
  • *Deines, J., Lobell, D., Want, S. (2020). Satellites reveal a small positive yield effect from conservation tillage across the US Corn Belt. Environmental Research Letters. 14 (12).
  • *Baldock, J., Burgess, R., Collier, S., Creque, J., DeLonge, M., Dungait, J., Ellert, B., Frank, S., Goddard, T., Govaerts, B., Grundy, M., Henning, M., Izaurralde, R.C., Jahn, M., Madaras, M., McConkey, Mulhern, W., Paustian, K., B., Porzig, E., Rice, C., Searle, R., Seavy, N., Skalsky, R. (2019). Quantifying carbon for agricultural soil management: from the current status toward a global soil information system. Carbon Management. 10:6 (567-587). https://doi.org/10.1080/17583004.2019.1633231
  • *Becker-Reshef, I., Barker, B., Humber, M., Puricelli, E., Sanchez, A., Sahajpal, R., McGaughey, K., Justice, C., Baruth, B., Wu, B., Prakash, A., Abdolreza, A., Jarvis, I. 2019. The GEOGLAM crop monitor for AMIS: Assessing crop conditions in the context of global markets. Global Food Security. 23, 173-181. https://doi.org/10.1016/j.gfs.2019.04.010
  • Huang, X., Liao, C., Xing, M., Ziniti, B., Wang, J., Shang, J., … Torbick, N. (2019, October 30). A multi-temporal binary-tree classification using polarimetric RADARSAT-2 imagery. Remote Sesning of Environment, 235. https://doi.org/10.1016/j.rse.2019.111478
  • *Whitcraft, Alyssa K., et al. “No Pixel Left behind: Toward Integrating Earth Observations for Agriculture into the United Nations Sustainable Development Goals Framework.” Remote Sensing of Environment, Elsevier, 31 Oct. 2019. https://doi.org/10.1016/j.rse.2019.111470
  • *McNally, A.; Verdin, K.; Harrison, L.; Getirana, A.; Jacob, J.; Shukla, S.; Arsenault, K.; Peters-Lidard, C.; Verdin, J.P. 2019. Acute Water-Scarcity Monitoring for Africa. Water 11, 1968. https://www.mdpi.com/2073-4441/11/10/1968
  • Cai, Y., Guan, K., Lobell, D., Potgieter, A., Wang, S., Peng, J., ... Peng, B. (2019). Integrating satellite and climate data to predict wheat yield in Australia using machine learning approaches. Elsevier Agricultural and Forest Meteorology, 274, 144-159. https://doi.org/10.1016/j.agrformet.2019.03.010 
  • *Skakun, S.; Vermote, E.; Franch, B.; Roger, J.-C.; Kussul, N.; Ju, J.; Masek, J. 2019. Winter Wheat Yield Assessment from Landsat 8 and Sentinel-2 Data: Incorporating Surface Reflectance, Through Phenological Fitting, into Regression Yield Models. Remote Sens. 11, 1768. https://doi.org/10.3390/rs11151768
  • Skakun S., Justice C., Vermote E., & Roger J.-C. (2018). Transitioning from MODIS to VIIRS: an analysis of inter-consistency of NDVI data sets for agricultural monitoring. International Journal of Remote Sensing (2016 IF:1.724; 5-year IF: 1.986), vol. 39, no. 4, pp. 971-992, doi: 10.1080/01431161.2017.1395970
  • *Torbick, N., Huang, X., Ziniti, B., Johnson, D., Masek, J. and Reba, M. 2018. Fusion of Moderate Resolution Earth Observations for Operational Crop Type Mapping. Remote Sens. 10(7), 1058; https://doi.org/10.3390/rs10071058
  • Funk, C., Shukla, S., Thiaw, W.M., Rowland, J., Hoell, A., McNally, A., … Verdin, J. (2019). Recognizing the famine early warning systems network: over 30 years of drought early warning science advances and partnerships promoting global food security. American Meteorological Society. doi: 10.1175/BAMS-D-17-0233.1
  • Huang, X., Ziniti, B., and Torbick, N. 2019. "Assessing Conflict Driven Food Security in Rakhine, Myanmar with Multisource Imagery," Land, MDPI, Open Access Journal, 8(6), 1-11. https://doi.org/10.3390/land8060095
  • *Franch, B., Vermote, E. F., Skakun, S., Roger, J. C., Becker-Reshef, I., Murphy, E., & Justice, C. 2019. Remote sensing based yield monitoring: Application to winter wheat in United States and Ukraine. International Journal of Applied Earth Observation and Geoinformation, 76, 112-127. https://doi.org/10.1016/j.jag.2018.11.012
  • Guillevic, P.C., Olioso, A., Hook, S.J., Fisher, J.B., Lagouarde, J.P. and Vermote, E.F. 2019. Impact of the Revisit of Thermal Infrared Remote Sensing Observations on Evapotranspiration Uncertainty—A Sensitivity Study Using AmeriFlux Data. Remote Sensing, 11(5). https://doi.org/10.3390/rs11050573
  • *McNally, A., McCartney, S., Ruane, A., Mladenova, I., Whitcraft, A., Becker-Reshef, I., Bolten, J.D., Peters-Lidard, C., Rosenzweig, C. and Schollaert Uz, S. 2019. Hydrologic and Agricultural Earth Observations and Modeling for the Water-Food Nexus. Front. Environ. Sci. https://doi.org/10.3389/fenvs.2019.00023
  • Allen, S., de Brauw, A. (2018). Nutrition sensitive value chains: theory, progress, and open questions. Glob. Food Secur. 16, 22–28. doi: 10.1016/j.gfs.2017.07.
  • Nakalembe, C. 2018.. Characterizing agricultural drought in the Karamoja subregion of Uganda with meteorological and satellite-based indices. Natural Hazards, 91(3), 837-862. https://doi.org/10.1007/s11069-017-3106-x
  • Skakun, S., Vermote, E.F., Roger, J.C., Justice, C.O. and Masek, J.G. 2019. Validation of the LaSRC cloud detection algorithm for Landsat 8 images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 12(7), 2439 - 2446. 10.1109/JSTARS.2019.2894553
  • *Becker-Reshef, I., Justice, C., Barker, B., Humber, M., Rembold F., Bonifacio, R., Zappacosta, M., Budde, M., Magadzire, T., Shitote, C., Pound, J., Constantino, A., Nakalembe, C., Mwangi, K., Sobue, S., Newby, T., Whitcraft, A., Jarvis, I., Verdin, J. 2020. Strengthening agricultural decisions in countries at risk of food insecurity: The GEOGLAM Crop Monitor for Early Warning. Remote Sensing of the Environment, 237, 111556, https://doi.org/10.1016/j.rse.2019.111553
  • *Fritz, S., See, L., Laso Bayas, J.C., Waldner, F., Jacques, D., Becker-Reshef, I., Whitcraft, A., Baruth, B., Bonifacio, R., Crutchfield, J., Rembold, F., Rojas, O., Schucknecht, A., Van der Velde, M., Verdin, J., Wu, B., Yan, N., You, L., Gilliams, S.,  Mücher, S., Tetrault, R., Moorthy, I., McCallum, I. 2019. A comparison of global agricultural monitoring systems and current gaps. Agricultural Systems, 168, 258-272. https://doi.org/10.1016/j.agsy.2018.05.010
  • Kumar, S. V., Dirmeyer, P. A., Peters-Lidard, C. D., Bindlish, R., & Bolten, J. (2018). Information theoretic evaluation of satellite soil moisture retrievals. Remote Sensing of Environment, 204, 392-400. https://doi.org/10.1016/j.rse.2017.10.016

 

Partner Research Pre-Dating Harvest

(Prior to 2018)

  • Ahamed, A., & Bolten, J. D. (2017). A MODIS-based automated flood monitoring system for southeast asia. International Journal of Applied Earth Observation and Geoinformation, 61, 104-117. https://doi.org/10.1016/j.jag.2017.05.006
  • Allen, S. & Ulimwengu, J. (2015) Agricultural Productivity, Health and Public Expenditures in Sub-Saharan Africa. Eur J Dev Res 27: 425. https://doi.org/10.1057/ejdr.2015.38
  • Anderson, W, L. You, S. Wood, U. Wood-Sichra, W. Wu. 2015. An analysis of methodological and spatial differences in global cropping systems models and maps. Global Ecology and Biogeography Volume 24, Issue 2, Page 180-191
  • Bandaru, V., Daughtry, C. S., Codling, E. E., Hansen, D. J., White-Hansen, S., & Green, C. E. (2016). Evaluating leaf and canopy reflectance of stressed rice plants to monitor arsenic contamination. International journal of environmental research and public health, 13(6), 606. doi:10.3390/ijerph13060606
  • Bandaru, V., Pei, Y., Hart, Q., & Jenkins, B. M. (2017). Impact of biases in gridded weather datasets on biomass estimates of short rotation woody cropping systems. Agricultural and forest meteorology, 233, 71-79. https://doi.org/10.1016/j.agrformet.2016.11.008
  • Baraldi, A., & Humber, M. L. (2015). Quality Assessment of Preclassification Maps Generated From Spaceborne/Airborne Multispectral Images by the Satellite Image Automatic Mapper and Atmospheric/Topographic Correction-Spectral Classification Software Products: Part 1—Theory. Part 2—experimental results. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(3), 1307-1329.
  • Baraldi, A., Boschetti, L., & Humber, M. L. (2014). Probability Sampling Protocol for Thematic and Spatial Quality Assessment of Classification Maps Generated From Spaceborne/Airborne Very High Resolution Images. IEEE Transactions on Geoscience and Remote Sensing, 52(1), 701-760.
  • Becker-Reshef, I., Justice, C., Doorn, B., Reynolds, C., Anyamba, A., Tucker, C. J., & Korontzi, S. (2009). NASA’s contribution to the Group on Earth Observations (GEO) Global Agricultural Monitoring System of Systems. NASA Earth Observer, 21, 24-29.
  • Becker-Reshef I., Justice C., Sullivan M., Tucker CJ., Anyamba A.,  Small J.,  Pak E., Hansen M.,  Pittman K., Schmaltz J.,  Masouka E., Williams D., Reynolds C., and Doorn B. 2010. Monitoring Global Croplands with Coarse Resolution Earth Observations: The Global Agriculture Monitoring (GLAM) Project.  Remote Sensing, 2(6), 1589-1609. doi:10.3390/rs2061589
  • Becker-Reshef, I., Vermote, E., Lindeman, M., & Justice, C. (2010). A generalized regression-based model for forecasting winter wheat yields in Kansas and Ukraine using MODIS data. Remote Sensing of Environment, 114(6), 1312-1323. https://doi.org/10.1016/j.rse.2010.01.010
  • Brown, M. E., Carr, E. R., Grace, K. L., Wiebe, K., Funk, C. C., Attavanich, W., ... & Buja, L. (2017). Do markets and trade help or hurt the global food system adapt to climate change? Food Policy, 68, 154-159. ISSN 0306-9192, doi:10.1016/j.foodpol.2017.02.004
  • Brown, M. E., Tondel, F., Essam, T., Thorne, J. A., Mann, B. F., Leonard, K., & Eilerts, G. (2012). Country and regional staple food price indices for improved identification of food insecurity. Global Environmental Change, 22(3), 784-794. https://doi.org/10.1016/j.gloenvcha.2012.03.005
  • Chambers, E., Erickson, A., Fekete, S. P., Lenchner, J., Sember, J., Srinivasan, V., ... & Whitesides, S. (2017). Connectivity Graphs of Uncertainty Regions. Algorithmica, 78(3), 990-1019.
  • Chang, A., Jung, J., Maeda, M. M., & Landivar, J. (2017). Crop height monitoring with digital imagery from Unmanned Aerial System (UAS). Computers and Electronics in Agriculture, 141, 232-237. https://doi.org/10.1016/j.compag.2017.07.008.
  • Davies, D. K., Brown, M. E., Murphy, K. J., Michael, K. A., Zavodsky, B. T., Stavros, E. N., & Caroll, M. L. (2017). Workshop on Using NASA Data for Time-Sensitive Applications [Space Agencies]. IEEE Geoscience and Remote Sensing Magazine, 5(3), 52-58. doi: 10.1109/MGRS.2017.2729278
  • Dempewolf, J., Adusei, B., Becker-Reshef, I., Hansen, M., Potapov, P., Khan, A., & Barker, B. (2014). Wheat yield forecasting for Punjab Province from vegetation index time series and historic crop statistics. Remote Sensing, 6(10), 9653-9675. doi:10.3390/rs6109653
  • Devare, M., Zandstra, M., Clobridge, A., Fotsy, M., Abreu, D., Arnaud, E., Baraka, P., Bonaiuti, E., Chukka, S., Dieng, I., Dreher, K., Erlita, S., Juarez, H., Kim, S., Koo, J., Muchlish, U., Müller, M., Mwanzia, L., Poole, J and Siddiqui, S. (2017) Open Access and Open Data at CGIAR: Challenges and Solutions. Knowledge Management for Development Journal, 13 (2). pp. 6-21. ISSN 1947-4199
  • Enenkel, M., L. See, R. Bonifacio, V. Boken, N. Chaney, P. Vinck, L.You, E. Dutra, M. Anderson. 2015. Drought and food security - Improving decision-support via new technologies and innovative collaboration. Global Food Security Volume 4, page 51-54
  • Farmaha, B. S., Lobell, D. B., Boone, K. E., Cassman, K. G., Yang, H. S., & Grassini, P. (2016). Contribution of persistent factors to yield gaps in high-yield irrigated maize. Field crops research, 186, 124-132. https://doi.org/10.1016/j.fcr.2015.10.020
  • Fayne, J. V., Bolten, J. D., Doyle, C. S., Fuhrmann, S., Rice, M. T., Houser, P. R., & Lakshmi, V. (2017). Flood mapping in the lower Mekong River Basin using daily MODIS observations. International journal of remote sensing, 38(6), 1737-1757. https://doi.org/10.1080/01431161.2017.1285503
  • Flanagan, S. A., Hurtt, G. C., Fisk, J. P., Sahajpal, R., Hansen, M. C., Dolan, K. A., ... & Zhao, M. (2016). Potential vegetation and carbon redistribution in Northern North America from climate change. Climate, 4(1), 2. doi:10.3390/cli4010002
  • Franch, B., Vermote, E. F., Becker-Reshef, I., Claverie, M., Huang, J., Zhang, J., ... & Sobrino, J. A. (2015). Improving the timeliness of winter wheat production forecast in the United States of America, Ukraine and China using MODIS data and NCAR Growing Degree Day information. Remote Sensing of Environment, 161, 131-148. https://doi.org/10.1016/j.rse.2015.02.014 
  • Franch, B., Vermote, E., Roger, J.C., Murphy, E., Becker-Reshef, I., Justice, C., Claverie, M., Nagol, J., Csiszar, I., Meyer, D., Baret, F., Masuoka, E., Wolfe, R. and Devadiga, S. (2017). A 30+ year AVHRR Land Surface Reflectance Climate Data Record and its application to wheat yield monitoring, Remote Sensing, 9, 296
  • Fritz S, Fonte CC, & See L (2017). The Role of Citizen Science in Earth Observation. Remote Sensing 9 (4): p. 357. doi:10.3390/rs9040357.
  • Fritz S, See L, Perger C, McCallum I, Schill C, Schepaschenko D, Duerauer M, Karner M, et al. (2017). A global dataset of crowdsourced land cover and land use reference data. Scientific Data 4: p.170075. doi:10.1038/sdata.2017.75
  • Fritz S., Schepaschenko D., and See L. (2016). Carbon tracking: Limit uncertainties in land emissions. Nature, 534 (7609). p. 621 doi:10.1038/534621e
  • Fritz, S., L. See, I. Mccallum, L. You, et al. (2015). Mapping global cropland and field size, Global Change Biology 21, 1980-1992, doi: 10.1111/gcb.12838
  • Fritz, S., See, L., You, L., Justice, C., BeckerReshef, I., Bydekerke, L., ... & Gilliams, S. (2013). The need for improved maps of global cropland. Eos, Transactions American Geophysical Union, 94(3), 31-32. https://doi.org/10.1002/2013EO030006
  • Funk, C., Nicholson, S. E., Landsfeld, M., Klotter, D., Peterson, P., & Harrison, L. (2015). The centennial trends greater horn of Africa precipitation dataset. Scientific data, 2, 150050. ​doi:10.1038/sdata.2015.50.
  • Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., ... & Michaelsen, J. (2015). The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Scientific data, 2, 150066. doi: 10.1038/sdata.2015.66.
  • Funk, C., Verdin, A., Michaelsen, J., Peterson, P., Pedreros, D., & Husak, G. (2015). A global satellite-assisted precipitation climatology. Earth System Science Data, 7(2), 275. doi: 10.5194/essdd-8-401-2015.
  • Goodyear, L., Barela, E., Jewiss, J., & Usinger, J. (Eds.). (2014). Qualitative inquiry in evaluation: From theory to practice (Vol. 29). John Wiley & Sons.
  • Guo, S., Lenchner, J., Connell, J., Dholakia, M., & Muta, H. (2017, March). Conversational bootstrapping and other tricks of a concierge robot. In Proceedings of the 2017 ACM/IEEE International Conference on Human-Robot Interaction (pp. 73-81). ACM.
  • Gustafson, D., Gutman, A., Leet, W., Drewnowski, A., Fanzo, J., & Ingram, J. (2016). Seven food system metrics of sustainable nutrition security. Sustainability, 8(3), 196. doi:10.3390/su8030196
  • Hatfield, J.L., K.J. Boote, B.A. Kimball, L.H. Ziska, R.C. Izaurralde, D. Ort, A. Thomson, D.W. Wolfe. 2011. Climate impacts on agriculture: Implications for crop production. Agron. J. 103:351-370.
  • Izaurralde, R.C., W.B. McGill, J.R. Williams, C.D. Jones, R.P. Link, D.H. Manowitz, D.E. Schwab, X. Zhang, G.P. Robertson, and N. Millar. 2017. Simulating microbial denitrification with EPIC: Model description and evaluation. Ecol. Modell. 359:349-362. doi: 10.1016/j.ecolmodel.2017.06.007. 
  • Jain, M., Srivastava, A. K., Joon, R. K., McDonald, A., Royal, K., Lisaius, M. C., & Lobell, D. B. (2016). Mapping Smallholder Wheat Yields and Sowing Dates Using Micro-Satellite Data. Remote Sensing, 8(10), 860. doi:10.3390/rs8100860
  • Janetos, A., Justice, C., Jahn, M., Obersteiner, M., Glauber, J., Mulhern, W. 2017 “The Risks of Multiple Breadbasket Failures in the 21st Century: A Science Research Agenda.” March. Pardee Center Research Report, The Frederick S. Pardee Center for the Study of the Longer-Range Future, Boston University.
  • Jantz, S. M., Barker, B., Brooks, T. M., Chini, L. P., Huang, Q., Moore, R. M., ... & Hurtt, G. C. (2015). Future habitat loss and extinctions driven by landuse change in biodiversity hotspots under four scenarios of climatechange mitigation. Conservation Biology, 29(4), 1122-1131. https://doi.org/10.1111/cobi.12549
  • Jean, N., Burke, M., Xie, M., Davis, W. M., Lobell, D. B., & Ermon, S. (2016). Combining satellite imagery and machine learning to predict poverty. Science, 353(6301), 790-794. doi: 10.1126/science.aaf7894
  • Johnson, D. M. (2016) A comprehensive assessment of the correlations between field crop yields and commonly used MODIS products. International Journal of Applied Earth Observation and Geoinformation, Volume 52, Pages 65-81, ISSN 0303-2434, https://doi.org/10.1016/j.jag.2016.05.010.
  • Lasko K, Vadrevu KP, Tran VT, Ellicott E, Nguyen TTN, Bui HQ, Justice C. 2017. Satellites may underestimate rice residue and associated burning emissions in Vietnam. Environmental Research Letters, 12(8), 085006.
  • Laso Bayas, J.C., See, L., Perger, C., Justice C., Nakalembe, C., Dempewolf, J., & Fritz, S. (2017). Validation of Automatically Generated Global and Regional Cropland Data Sets: The Case of Tanzania. Remote Sensing 9 (8). e815. DOI: https://doi.org/10.3390/rs9080815.
  • Li, Y., Sulla-Menashe, D., Motesharrei, S., Song, X. P., Kalnay, E., Ying, Q., ... & Ma, Z. (2017). Inconsistent estimates of forest cover change in China between 2000 and 2013 from multiple datasets: differences in parameters, spatial resolution, and definitions. Scientific Reports, 7(1), 8748. doi:10.1038/s41598-017-07732-5
  • Lunt, T., A.W. Jones, W.S. Mulhern, D.P.M. LeZaks, M.M. Jahn. 2016. Vulnerabilities to agricultural production shocks: An extreme, plausible scenario for assessment of risk for the insurance sector.  Climate Risk Management.  DOI 10.1016/j.crm.2016.05.001
  • McNally, A., Arsenault, K., Kumar, S., Shukla, S., Peterson, P., Wang, S., ... & Verdin, J. P. (2017). A land data assimilation system for sub-Saharan Africa food and water security applications. Scientific data, 4, 170012. doi:10.1038/sdata.2017.12
  • Mladenova, I. E., Bolten, J. D., Crow, W. T., Anderson, M. C., Hain, C. R., Johnson, D. M., & Mueller, R. (2017). Intercomparison of Soil Moisture, Evaporative Stress, and Vegetation Indices for Estimating Corn and Soybean Yields Over the US. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(4), 1328-1343. doi: 10.1109/JSTARS.2016.2639338
  • Molinario, G., Hansen, M. C., Potapov, P. V., Tyukavina, A., Stehman, S., Barker, B., & Humber, M. (2017). Quantification of land cover and land use within the rural complex of the Democratic Republic of Congo. Environmental Research Letters, 12(10), 104001. https://doi.org/10.1088/1748-9326/aa8680
  • Nakalembe, C., Dempewolf, J., & Justice, C. (2017). Agricultural land use change in Karamoja Region, Uganda. Land Use Policy, 62, 2-12. https://doi.org/10.1016/j.landusepol.2016.11.029
  • Niles, M. T., & Brown, M. E. (2017). A multi-country assessment of factors related to smallholder food security in varying rainfall conditions. Scientific reports, 7(1), 16277. doi:10.1038/s41598-017-16282-9
  • Pittman, K., Hansen, M. C., Becker-Reshef, I., Potapov, P. V., & Justice, C. O. (2010). Estimating global cropland extent with multi-year MODIS data. Remote Sensing, 2(7), 1844-1863. doi:10.3390/rs2071844
  • Roy, S. K., Rowlandson, T. L., Berg, A. A., Champagne, C., & Adams, J. R. (2016). Impact of sub-pixel heterogeneity on modelled brightness temperature for an agricultural region. International journal of applied earth observation and geoinformation, 45, 212-220. https://doi.org/10.1016/j.jag.2015.10.003
  • Schulthess, U., Krupnik, T.J., Ahmed, Z.U., McDonald, A.J. (2015). Technology targeting for sustainable intensification of crop production in the Delta region of Bangladesh, in: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives. doi:10.5194/isprsarchives-XL-7-W3-1475-2015
  • See, L., S. Fritz, L. You, N. Ramankutty, M. Herrero, C. Justice, I. Becker-Reshef, P.Thornton, K. Erb, P. Gong, H. Tang, M.van der Velde, P. Ericksen, I. McCallum, F. Kraxner, M. Obersteiner. 2015. Improved global cropland data as an essential ingredient for food security. Global Food Security, Volume 4, page 37-45
  • Shukla, S., McNally, A., Husak, G., & Funk, C. (2014). A seasonal agricultural drought forecast system for food-insecure regions of East Africa. Hydrology and Earth System Sciences, 18(10), 3907-3921. doi: 10.5194/hess-18-3907-2014.
  • Skakun S., Roger J.-C. , Vermote E.F. , Masek J.G. & Justice C.O. (2017). Automatic sub-pixel co-registration of Landsat-8 Operational Land Imager and Sentinel-2A Multi-Spectral Instrument images using phase correlation and machine learning based mapping. International Journal of Digital Earth (2016 IF: 2.292; 5-year IF: 2.978), vol. 10, no. 12, pp. 1253–1269. doi:10.1080/17538947.2017.1304586.
  • Skakun S., Vermote E., Roger J.-C., & Justice C. (2017) Multi-spectral misregistration of Sentinel-2A images: analysis and implications for potential applications. IEEE Geoscience and Remote Sensing Letters (2016 IF: 2.761; 5-year IF: 2.899), vol. 14, no. 12, pp. 2408-2412. doi:10.1109/LGRS.2017.2766448.
  • Skakun, S., Franch, B., Vermote, E., Roger, J.-C. Becker-Reshef, I., Justice, C., Kussul, N. (2017). Early season large-area winter crop mapping using MODIS NDVI data, growing degree days information and a Gaussian mixture model. Remote Sensing of Environment (2016 IF: 6.265; 5-year IF: 7.653), vol. 195, 244–258. doi:10.1016/j.rse.2017.04.026.
  • Song, X. P., Potapov, P. V., Krylov, A., King, L., Di Bella, C. M., Hudson, A., ... & Hansen, M. C. (2017). National-scale soybean mapping and area estimation in the United States using medium resolution satellite imagery and field survey. Remote sensing of environment, 190, 383-395. https://doi.org/10.1016/j.rse.2017.01.008
  • Tadesse, T., Champagne, C., Wardlow, B. D., Hadwen, T. A., Brown, J. F., Demisse, G. B., ... & Davidson, A. M. (2017). Building the vegetation drought response index for Canada (VegDRI-Canada) to monitor agricultural drought: first results. GIScience & Remote Sensing, 54(2), 230-257. https://doi.org/10.1080/15481603.2017.1286728
  • Tesfaye, K., Kassie, M., Cairns, J.E., Michael, M., Stirling, C., Abate, T., Prasanna, B.M., Mekuria, M., Hailu, H., Erenstein, O., Gerard, B. (2017). Potential for Scaling up Climate Smart Agricultural Practices: Examples from Sub-Saharan Africa, in: Climate Change Adaptation in Africa. Springer, pp. 185–203. https://doi.org/10.1007/978-3-319-49520-0_12
  • Torbick, N., Chowdhury, D., Salas, W., & Qi, J. (2017). Monitoring rice agriculture across myanmar using time series Sentinel-1 assisted by Landsat-8 and PALSAR-2. Remote Sensing, 9(2), 119. doi:10.3390/rs9020119
  • Turner, M.D., Butt, B., Singh, A., Brottem, L., Ayantunde, A., Gerard, B. (2016). Variation in vegetation cover and livestock mobility needs in Sahelian West Africa. J. Land Use Sci. 11, 76–95. https://doi.org/10.1080/1747423X.2014.965280
  • Vadrevu, K.P., Nemani, R., Justice, C., and Gutman, G. (Eds). (2017). Mapping, Monitoring and Impact Assessment of Land Cover/Land Use Changes in South and South East Asia. Remote Sensing (MDPI) Special Issue. (ISSN 2072-4292).
  • Vadrevu, K.P., Ohara, T., and Justice, C. (Eds). (2017). Land Atmospheric Research Applications in Asia. 30-Chapters. Springer Verlag. (ISBN: 978-3-319-67473-5)
  • Vanlauwe, B., Barrios, E., Robinson, T., Van Asten, P., Zingore, S., Gerard, B. (2017). System productivity and natural resource integrity in smallholder farming: Friends or foes?, in: Oborn, I., Vanlauwe, B., Phillips, M., Thomas, R., Brooijmans, W., Atta-Krah, K. (eds.), Sustainable
  • Whitcraft, A. K., Becker-Reshef, I., & Justice, C. (2015). A Framework for Defining Spatially Explicit Earth Observation Requirements for a Global Agricultural Monitoring Initiative (GEOGLAM). Remote Sensing. Remote Sensing 7(2), 1461-1581.
  • Whitcraft, A. K., Becker-Reshef, I., & Justice, C. O. (2015). Agricultural growing season calendars derived from MODIS surface reflectance. International Journal of Digital Earth, 8(3), 173-197. https://doi.org/10.1080/17538947.2014.894147
  • Whitcraft, A. K., Becker-Reshef, I., Killough, B. D., & Justice, C. O. (2015). Meeting Earth Observation Requirements for Global Agricultural Monitoring: An Evaluation of the Revisit Capabilities of Current and Planned Moderate Resolution Optical Earth Observing Missions. Remote Sensing 7(2), 1482-1503.
  • Whitcraft, A. K., Vermote, E. F., Becker-Reshef, I., & Justice, C. O. (2015). Cloud cover throughout the agricultural growing season: Impacts on passive optical earth observations. Remote Sensing of Environment, 156, 438–447. doi:10.1016/j.rse.2014.10.009
  • White, J. W., Hunt, L. A., Boote, K. J., Jones, J. W., Koo, J., Kim, S., ... & Hoogenboom, G. (2013). Integrated description of agricultural field experiments and production: The ICASA Version 2.0 data standards. Computers and Electronics in Agriculture, 96, 1-12. ISSN 0168-1699, doi: 10.1016/j.compag.2013.04.003